Hydrogen Bonding and Related Properties in Liquid Water: A Car-Parrinello Molecular Dynamics Simulation Study.

نویسندگان

  • Elvira Guardia
  • Ioannis Skarmoutsos
  • Marco Masia
چکیده

The local hydrogen-bonding structure and dynamics of liquid water have been investigated using the Car-Parrinello molecular dynamics simulation technique. The radial distribution functions and coordination numbers around water molecules have been found to be strongly dependent on the number of hydrogen bonds formed by each molecule, revealing also the existence of local structural heterogeneities in the structure of the liquid. The results obtained have also revealed the strong effect of the local hydrogen-bonding network on the local tetrahedral structure and entropy. The investigation of the dynamics of the local hydrogen-bonding network in liquid water has shown that this network is very labile, and the hydrogen bonds break and reform very rapidly. Nevertheless, it has been found that the hydrogen-bonding states associated with the formation of four hydrogen bonds by a water molecule exhibit the largest survival probability and corresponding lifetime. The reorientational motions of water molecules have also been found to be strongly dependent on their initial hydrogen-bonding state. Finally, the dependence of the librational and vibrational modes of water molecules on the local hydrogen-bonding network has been carefully examined, revealing a significant effect upon the libration and bond-stretching peak frequencies. The calculated low frequency peaks come in agreement with previously reported interpretations of the experimental low-frequency Raman spectrum of liquid water.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transport of a Liquid Water-Methanol Mixture in a Single Wall Carbon Nanotube

In this work, a molecular dynamics simulation of the transport of water - methanol mixture through the single wall carbon nanotube (SWCNT) is reported. Methanol and water are selected as fluid molecules since water represents a strongly polar molecule while methanol is as an intermediate between polar and strongly polar molecules. Some physical properties of the methanol-water mixture such as r...

متن کامل

Calculation of Physical Properties of the Methanol-Water Mixture Using Molecular Dynamics Simulation

In this study some properties ofthe methanol-water mixture such as diffusivity, density, viscosity, and hydrogen bonding were calculated at different temperatures and <span style="font-size: 10pt; colo...

متن کامل

Molecular Dynamics Simulation of Water in Single WallCarbon Nanotube

The overall aim of this study is to calculate some water properties in the single wall carbon naotubes (SWCNT) and compare them to the bulk water properties to investigate the deviation of water properties inside the SWCNT from those in the bulk. Here some physical and transport properties of water molecules in the single wall carbon nanotube were reported by performing molecular dynamics (MD) ...

متن کامل

A coupled Car-Parrinello molecular dynamics and EXAFS data analysis investigation of aqueous Co(2+).

We have studied the microscopic solvation structure of Co(2+) in liquid water by means of density functional theory (DFT)-based Car-Parrinello molecular dynamics (CPMD) simulations and extended X-ray absorption fine structure (EXAFS) data analysis. The effect of the number of explicit water molecules in the simulation box on the first and second hydration shell structures has been considered. C...

متن کامل

Car-Parrinello molecular dynamics simulations of Na–Cl ion pair in liquid water

The aqueous solvation shell of a Na–Cl pair is studied using Car-Parrinello molecular dynamics simulations. Water-mediated and contact states of the ion pair are investigated. The first hydration shell of the Na ion is found to be octahedral with one vacant position for both states. In the contact state one of the water molecules is substituted by the Cl ion. The first hydration shell of the Cl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The journal of physical chemistry. B

دوره 119 29  شماره 

صفحات  -

تاریخ انتشار 2015